
International Journal of Heat and Mass Transfer 52 (2009) 2902–2913
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
Flow and heat transfer in a power-law fluid over a stretching sheet with
variable thermal conductivity and non-uniform heat source

M. Subhas Abel a,*, P.S. Datti b, N. Mahesha a

a Department of Mathematics, Gulbarga University, Gulbarga, Karnataka, India
b TIFR Centre, Indian Institute of Science Campus, Bangalore, Karnataka, India
a r t i c l e i n f o

Article history:
Received 16 June 2008
Received in revised form 30 July 2008
Available online 14 February 2009

Keywords:
Power-law fluid
Stretching sheet
Variable thermal conductivity
Non-uniform heat source
Prandtl number
0017-9310/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.ijheatmasstransfer.2008.08.042

* Corresponding author. Tel.: +91 8472 245633.
E-mail address: msabel2001@yahoo.co.uk (M.S. Ab
a b s t r a c t

In this paper the flow of a power-law fluid due to a linearly stretching sheet and heat transfer character-
istics using variable thermal conductivity is studied in the presence of a non-uniform heat source/sink.
The thermal conductivity is assumed to vary as a linear function of temperature. The similarity transfor-
mation is used to convert the governing partial differential equations of flow and heat transfer into a set
of non-linear ordinary differential equations. The Keller box method is used to find the solution of the
boundary value problem. The effect of power-law index, Chandrasekhar number, Prandtl number, non-
uniform heat source/sink parameters and variable thermal conductivity parameter on the dynamics is
analyzed. The skin friction and heat transfer coefficients are tabulated for a range of values of said
parameters.
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1. Introduction Gupta and Gupta [2] investigated heat transfer from an isother-
The study of laminar boundary layer flow and heat transfer in a
non-Newtonian fluid over a stretching sheet, issuing from a slit,
has gained tremendous interest in the past two decades. A great
number of investigations concern the boundary layer behavior on
a stretching surface and this is important in many engineering
and industrial applications. Flow due to stretching sheet is often
encountered in extrusion processes (Fig. 1) where a melt is
stretched into a cooling liquid. Apart from this, many metallurgical
processes including chemical engineering processes involve cool-
ing of continuous stripes or filaments by drawing them into a cool-
ing system. The fluid mechanical properties desired for the
outcome of such a process would mainly depend on the rate of
cooling and stretching rate. So, one has to pay considerable atten-
tion in knowing the heat transfer characteristics of the stretching
sheet as well.

In view of many such applications (see [13]) Crane [1] initiated
the analytical study of boundary layer flow due to a stretching
sheet. The velocity of the sheet was assumed to vary linearly with
the distance from the slit. The work of Crane was subsequently ex-
tended by many authors to Newtonian/non-Newtonian boundary
layer flow with various velocity and thermal boundary conditions;
see, for example, Gupta and Gupta [2], Chen and Char [3], Grubka
and Bobba [4], Chiam [5,19,20], Andersson et al. [8,12,31],
Siddheshwar and Mahabaleshwar [13], Abel et al. [21,27,28], Liao
[29,30], Rajagopal et al. [32] and references therein.
ll rights reserved.

el).
mal stretching sheet with suction/blowing effects. Chen and Char
[3] extended the works of Gupta and Gupta [2] to that of a non-iso-
thermal stretching sheet. Grubka and Bobba [4] carried out heat
transfer studies by considering the power law variation of surface
temperature. Chiam [5] investigated the magnetohydrodynamic
heat transfer from a non-isothermal stretching sheet. These studies
concern only Newtonian fluids. However, most of the practical sit-
uations demand for fluids that are non-Newtonian in nature which
are extensively used in many industrial and engineering applica-
tions. Acrivos et al. [6] investigated momentum and heat transfer
in laminar boundary layer flow of non-Newtonian fluids past exter-
nal surfaces. Schowalter [7] applied boundary layer theory to study
flow of power-law pseudo-plastic fluids and obtained similar solu-
tions. Andersson et al. [8] studied the flow of a power-law fluid
over a stretching sheet. Mahmoud and Mahmoud [9] obtained ana-
lytical solutions of hydromagnetic boundary layer flow of a power-
law fluid past a continuously moving surface. Hassanien et al. [10]
investigated the flow and heat transfer in a power-law fluid over a
non-isothermal stretching sheet with suction/injection.

An electrically conducting cooling fluid flow can be regulated by
an external magnetic field and thereby the heat transfer rate can
also be controlled. With this point of view Sarpakaya [11] has
investigated the effect of magnetic field on flow of non-Newtonian
fluid. Andersson [12] examined the influence of uniform magnetic
field on the motion of an electrically conducting viscoelastic fluid
over a stretching sheet. Siddeshwar and Mahabaleshwar [13] stud-
ied the influence of magnetic field on the flow and heat transfer in
a viscoelastic fluid in the presence of uniform heat source and ther-
mal radiation. Abo-Eldahab and Salem [14] studied the influence of
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Fig. 2. Schematic of a two-dimensional stretching sheet problem.

Fig. 1. Schematic of an extrusion process [13].
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transverse magnetic field on the flow and heat transfer of an elec-
trically conducting power-law fluid over a stretching sheet with a
uniform free stream. An excellent work on magnetohydrodynamic
stretching sheet problem involving a power-law fluid has been re-
ported by Liao [30] using the homotopy based analytical method.

As the study of heat source/sink effect on heat transfer is very
important in view of several physical problems, Vajravelu and Rol-
lins [15] and Vajravelu and Nayfeh [16] studied flow due to a
stretching surface and heat transfer in presence of uniform heat
source/sink (temperature-dependent heat source/sink). Abo-Elda-
hab and El-Aziz [17] included the effect of non-uniform heat
source/sink (space- and temperature-dependent heat source/sink)
with suction/blowing. But these works are confined to viscous flu-
ids only. Recently, Abel et al. [27,28] extended the work of Abo-
Eldahab and El-Aziz [17] to that of a viscoelastic fluid.

The above-cited works concern constant physical properties for
the cooling liquid, but practical situations demand for physical
properties with variable characteristics. Thermal conductivity is
one such property, which is assumed to vary linearly with the tem-
perature [18]. Chiam [19,20] considered the effect of variable ther-
mal conductivity on heat transfer. Abel et al. [21] have studied the
effect of variable thermal conductivity on the MHD boundary layer
viscoelastic fluid flow with temperature-dependent heat source/
sink, in presence of thermal radiation and buoyancy force.

Motivated by all these works we propose to investigate the ef-
fects of variable thermal conductivity, non-uniform heat source on
the flow and heat transfer in an electrically conducting power-law
fluid over a stretching sheet, in presence of an external transverse
magnetic field. In studying the heat transfer characteristics, two
different types of boundary conditions are considered.

2. Mathematical formulation

We consider the steady two-dimensional flow of an incom-
pressible, electrically conducting, non-Newtonian power-law fluid
obeying Ostwald-de Waele model over a flat impermeable stretch-
ing sheet. The flow is generated by the action of two equal and
opposite forces along the x-axis and the sheet is stretched with a
velocity that is proportional to the distance from the origin
(Fig. 2). The flow field is subjected to a transverse uniform mag-
netic field of strength H0 and it is assumed that the induced mag-
netic field is negligibly small (small magnetic Reynolds number
limit).

The non-Newtonian fluid model used for the present analysis is
the two-parameter power-law model of Ostwald-de Waele with
the parameters defined by Bird et al. [22]:

s ¼ K

ffiffiffiffiffiffiffiffi
D:D

2

r�����
�����

n�1
0
@

1
AD; ð1Þ
where s is the stress tensor, D is the rate of deformation of symmet-
ric tensor, K is the consistency coefficient, and n is the power-law
index. The above power-law model represents Newtonian fluid
when n = 1, with the dynamic coefficient of viscosity K. If n < 1
the fluid is said to be pseudo-plastic (shear thinning fluids) and if
n > 1 it is called dilatant (shear thickening fluids). The shear stress
component of the stress tensor for power-law fluid takes (see
[22]) the following form:

sxy ¼ K
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Now, the boundary layer equations governing the flow and heat
transfer in a power-law fluid over a stretching sheet, assuming that
the viscous dissipation is negligible, are given by
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where u and v are the velocity components along x and y directions,
respectively, t is the temperature of the fluid, q is the density, r is
the electrical conductivity of the fluid, sxy is the shear stress given
by (2), Cp is the specific heat at constant pressure, k is the thermal
conductivity which is assumed to vary linearly with temperature

and it is of the form, k ¼ k1 1þ e t�t1
tw�t1

� �h i
with e being a small

parameter. The non-uniform heat source/sink q000 is modeled as
(see [17])

q000 ¼ qkuwðxÞ
xK

A�ðtw � t1Þf 0 þ ðt � t1ÞB�½ �; ð6Þ

where A� and B� are the coefficients of space- and temperature-
dependent heat source/sink, respectively. Here we make a note that
the case A� > 0;B� > 0 corresponds to internal heat generation and
that A� < 0;B� < 0 corresponds to internal heat absorption.

We have adopted the following two kinds of boundary
heating:

(i) prescribed power-law surface temperature (PST)
u ¼ uw ¼ cx; v ¼ 0; t ¼ tw ¼ t1 þ A
x
L

� �k

at y ¼ 0;

u! 0; t ! t1 as y!1;
ð7Þ
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(ii) prescribed power-law heat flux (PHF)
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u ¼ uw ¼ cx; v ¼ 0; �k
@t
@y
¼ qw ¼ D

x
L

� �kþðð1�nÞ=ð1þnÞÞ
at y ¼ 0;

u! 0; t ! t1 as y!1;
ð8Þ

where tw is the temperature of the sheet, t1 is the temperature of
the fluid far away from the sheet, A and D are constants, k is the
temperature parameter and L is the characteristic length.

We introduce the following dimensionless variables:

X ¼ x
L
; Y ¼ qU2�n

0 Ln

K

 ! 1
nþ1 y

L
; U ¼ u

U0
;
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0 Ln

K

 ! 1
nþ1 v

U0
; T ¼ t � t1

tw � t1
;

sXY ¼
@U
@Y

����
����
n�1

@U
@Y
¼ KU3n

0 qn

Ln

 ! �1
nþ1

sxy; ReL ¼
qU2�n

0 Ln

K
;

where U0 ¼ cL is the reference velocity and

tw � t1 ¼
AXk in PST
DL
k1

Re�1=ðnþ1Þ
L Xk in PHF

( )
.

The boundary layer equations (3)–(5) now take the following
form:
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where Q ¼ rH2
0

qc is the Chandrasekhar number, PrL ¼ qCpU0L

k1ðReLÞ2=ðnþ1Þ is the

uniform Prandtl number, a ¼ k1A�

KCp
is the space dependent heat

source/sink parameter and b ¼ k1B�

KCp
is the temperature dependent

heat source/sink parameter.
The boundary conditions (7) and (8) put together takes the form

U¼Uw¼X; V ¼0;
T ¼1 inPST
@T
@Y¼�Xð1�nÞ=ð1þnÞ

1þeT inPHF

( )
at Y ¼0; ð12Þ

U!0; T!0 as Y!1:
Introducing the stream function w(X, Y) so as to satisfy the continu-
ity equation in the dimensionless form (9), we have

U ¼ @w
@Y
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@X

: ð13Þ

Using (13), Eqs. (10) and (11), with the boundary conditions
(12), can be written as
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@w
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In order to convert the partial differential equations (14) and (15)
into ordinary differential equations the following similarity trans-
formation is adopted:

wðX;YÞ ¼ X
2n

nþ1f ðgÞ; TðX; YÞ ¼
hðgÞ in PST
gðgÞ in PHF

� 	
; g ¼ X

1�n
1þnY :

ð17Þ

Using (17), Eq. (14) can be written as

ðjf 00jn�1f 00Þ0 � f 02 þ 2n
nþ 1

� �
ff 00 � Qf 0 ¼ 0; ð18Þ

where the prime denotes differentiation with respect to the similar-
ity variable g. It is assumed that for the flow next to stretching sur-
face @u

@y 6 0, i.e., f 00 6 0. Hence Eq. (18) further simplifies to

nð�f 00Þn�1f 000 � f 02 þ 2n
nþ 1

� �
ff 00 � Qf 0 ¼ 0: ð19Þ

On using (17) in Eqs. (15) and (16), along with Eq. (19), we ob-
tain the following boundary value problems

(i) PST:
nð�f 00Þn�1f 000 � f 0
2 þ 2n

nþ 1
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� 	
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f ðgÞ ¼ 0; f 0ðgÞ ¼ 1; hðgÞ ¼ 1 at g ¼ 0;
f 0ðgÞ ! 0; hðgÞ ! 0 as g!1;

ð22Þ

(ii) PHF:
nð�f 00Þn�1f 000 � f 02 þ 2n
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� 	
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f ðgÞ ¼ 0; f 0ðgÞ ¼ 1; g0ðgÞ ¼ �1
1þegðgÞ at g ¼ 0;

f 0ðgÞ ! 0; gðgÞ ! 0 as g!1;
ð25Þ

where Prx ¼ qCpuwx

k1ðRexÞ2=ðnþ1Þ
is the generalized Prandtl number.

The local skin friction coefficient Cf and the local Nusselt num-
ber Nux at the wall are given by:

Cf ¼ �2Re�1=nþ1
x ½�f 00ð0Þ�n; ð26Þ

Nux ¼
�Re1=nþ1

x h0ð0Þ in PST

�Re1=nþ1
x g0ð0Þ in PHF;

(
ð27Þ

where Rex ¼ qu2�n
w xn

K is the local Reynolds number. In what follows,
we drop the subscript x for the sake of simplicity, when referring
to the non-dimensional parameters like Prandtl and Reynolds
numbers.

We now outline the procedure for solving the boundary value
problems (20)–(22) and (23)–(25).
3. Method of solution

We use Keller Box method (see [25]) in finding the numerical
solutions of the resulting boundary value problems. Usually this
method is associated with numerical solutions of partial differen-
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tial equations. In the present context we use this method to solve
system of ordinary differential equations. To solve the boundary
value problems by the Keller box method Eqs. (20) and (21) in
the PST case are transformed into a system of five first order differ-
ential equations as follows:

df0

dg
¼ f1;

df1

dg
¼ f2;

df2

dg
¼ 1

n
ð�f2Þ1�n f 2

1 �
2n

nþ 1
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f0f2 þ Qf1

� 	
; ð28Þ
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kPrf1h0 �

2n
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� �
Prf0h1 � eh2

1

� 	
� Prðaf1 þ bh0Þ:

Subsequently the boundary conditions (22) take the form

f0ð0Þ ¼ 0; f 1ð0Þ ¼ 1; h0ð0Þ ¼ 1;
f1ð1Þ ¼ 0; h0ð1Þ ¼ 0;

ð29Þ

where f0 ¼ f ðgÞ; and h0 ¼ hðgÞ. The resulting system of equations (28)
is transformed into a system of non-linear algebraic equations (finite
difference equations) using a central difference scheme with uniform
mesh points. The boundary conditions in (29) form a part of the sys-
0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

420
0.0

0.2

0.4

0.6

0.8

1.0

n = 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
Q = 0.0

     n < 1  
     n = 1  
     n > 1 

f ' ( η
)

η

      n = 1.0      

Q = 1.0, 2.0, 3.0, 4.0, 5.0f ' ( η
)

η

a b

dc

Fig. 3. Effect of power-law index n and Chandrasek
tem of finite difference equations. The transformed system of non-
linear algebraic equations is then linearized by Newton’s method.
This system of linear algebraic equations is then solved by the Gauss
elimination method. Shooting method (see [24]) is used to obtain the
initial guess solution for the Keller box method. Same procedure is
adopted to solve the boundary layer Eqs. (23) and (24) subjected to
the conditions (25) in the PHF case. The results are presented in sev-
eral tables and graphs. In the next section we consider the special case
of a Newtonian problem (n = 1) to ascertain the validity of results.
4. Analytical solution for Newtonian problem (n = 1)

4.1. Solution for momentum equation

The momentum boundary layer Eq. (19) reduces to

f 000 � f 0
2 þ ff 00 � Qf 0 ¼ 0; ð30Þ

with boundary conditions

f ðgÞ ¼ 0; f 0ðgÞ ¼ 1; at g ¼ 0;
f 0ðgÞ ! 0; as g!1:

ð31Þ

The momentum boundary layer Eq. (30) subjected to the boundary
conditions (31) has an exact solution (see Pavlov [33]) of the form
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f ðgÞ ¼ 1� e�mg

m
; ð32Þ

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q

p
: ð33Þ
4.2. Solution for heat equation

The presence of a small parameter e in the thermal boundary
layer equation enables us to seek its solution through the perturba-
tion method.

4.2.1. PST case
Consider the heat transfer equation in PST case in the form,
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2 ¼ 0; ð34Þ

with boundary conditions

hðgÞ ¼ 1; at g ¼ 0;
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ð35Þ

The solution of Eq. (34) is assumed in the form,

hðgÞ ¼ h0ðgÞ þ eh1ðgÞ þ e2h2ðgÞ þ � � � ð36Þ
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Following the procedure of perturbation method the solution of the
zeroth order perturbation equation is obtained in terms of Kum-
mer’s function (see [23]) as follows:

h0ðgÞ¼C1e�mcgM½c�k;bþ1;�ae�mg�

þ a
1�aþab

� �X1
i¼0

Yi

j¼1

j�k

ðjþ1Þ2�aðjþ1Þþab

 !
ð�aÞiþ1e�mðiþ1Þg

ð37Þ

Using the above, the solution of the first order perturbation equa-
tion is obtained in the form,

h1ðgÞ ¼ C2e�mcgM½c� k; bþ 1;�ae�mg�
þ f~a0a2e�2mg � ~a1a3e�3mg þ ~a2a4e�4mg � � � �g
þ C1e�mcgf�~b0ae�mg þ ~b1a2e�2mg � ~b2a3e�3mg þ � � �g
þ C2

1e�2mcgf~c0 � ~c1ae�mg þ ~c2a2e�2mg � � � �g: ð38Þ

Similarly h2ðgÞ is obtained. The solution thus obtained for small e is
uniformly valid, because the higher order terms are too small in
magnitude as compared to the dominant zeroth order term. The
higher order terms beyond the second order act as a mere correc-
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tion factor and further enhances complexity in computation. These
factors for small e suggest quitting perturbation at this stage. Finally
the solution is written as,

hðgÞ ¼ h0ðgÞ þ eh1ðgÞ þ e2h2ðgÞ; ð39Þ

where h0ðgÞ, h1ðgÞ are given by Eqs. (37), (38), respectively, and con-
stants appearing therein are given in the appendix. Here we omit
the expression for h2ðgÞ due to reasons of space. The expression
for h1ðgÞ and h2ðgÞ are obtained with the help of the symbolic soft-
ware MATHEMATICA. The perturbation solution given by (39) is
applicable for small values of e. However, for not-so-small e, higher
order approximations are warranted and in this paper we go up to
three perturbation terms.

4.2.2. PHF case
In the PHF case we have

ð1þ egÞg00 þ Prðfg0 � kf 0gÞ þ Prð1þ egÞðaf 0 þ bgÞ þ eg0
2 ¼ 0; ð40Þ

with the boundary conditions

g0ðgÞ ¼ �1
1þegðgÞ at g ¼ 0;

gðgÞ ! 0 as g!1:
ð41Þ
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Once again we adopt perturbation technique to solve Eq. (40) sub-
ject to the boundary conditions (41). The solution of Eq. (40) is as-
sumed in the form

gðgÞ ¼ g0ðgÞ þ eg1ðgÞ þ e2g2ðgÞ þ � � � ð42Þ

Following the same procedure we obtain the solution of the zeroth
order perturbation equation in the form,

g0ðgÞ¼C3e�mcgM½c�k;bþ1;�ae�mg�

þ a
1�aþab

� �X1
i¼0

Yi

j¼1

j�k

ðjþ1Þ2�aðjþ1Þþab

 !
ð�aÞiþ1e�mðiþ1Þg

ð43Þ

Using (43), the solution of the first order perturbation equation is
determined as,

g1ðgÞ ¼ C4e�mcgM½c� k; bþ 1;�ae�mg�
þ f~a0a2e�2mg � ~a1a3e�3mg þ ~a2a4e�4mg � � � �g
þ C3e�mcgf�~b0ae�mg þ ~b1a2e�2mg � ~b2a3e�3mg þ � � �g
þ C2

3e�2mcgf~c0 � ~c1ae�mg þ ~c2a2e�2mg � � � �g: ð44Þ
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Fig. 7. Effect of space-dependent heat source/s
Similarly g2ðgÞ is obtained. Finally the perturbation solution in the
PHF case for small e is written as

gðgÞ ¼ g0ðgÞ þ eg1ðgÞ þ e2g2ðgÞ; ð45Þ

where g0ðgÞ, g1ðgÞ are given by Eqs. (43), (44) and constants appear-
ing therein are listed in the appendix. Here also the expression for
g2ðgÞ is omitted due to reasons of space. The observation on the
need of higher order approximations for not-so-small e done in
the context of PST holds for PHF also.

5. Results and discussion

MHD boundary layer flow and heat transfer in an electrically
conducting power-law fluid over a stretching sheet with variable
thermal conductivity is investigated in the presence of non-uni-
form heat source/sink. Analytical solutions are obtain for the spe-
cial case n = 1 corresponding to Newtonian fluids. Numerical
solution is warranted for the general case n – 1 which is achieved
using the Keller box method. The effect of n, Q, Pr, a, b, e and k on
flow and heat transfer are shown graphically in Figs. 3–10.

Fig. 3 depicts the effect of power-law index n and Chandrasekhar
number Q on the horizontal velocity profiles f 0ðgÞ. It is a known fact
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that increasing values of n implies drag and thereby decrease in
velocity. The same is reiterated by Fig. 3a. The effect of magnetic field
is to flatten f 0ðgÞ and the same is shown in Fig. 3b–d. The flattening of
the profile is due to the applied transverse magnetic field that pro-
duces a Lorentz force, causing transverse contraction of the bound-
ary layer. The magnetic field effect of flattening f 0ðgÞ is same in
pseudo-plastic, Newtonian and dilatant fluids.

Fig. 4 projects the influence of magnetic field on the skin friction
parameter. From this graph it is evident that the skin friction
parameter increases on the wall with increasing values of Q. This
is expected as the applied magnetic field induces a retarding force
(Lorentz force) against the motion of the fluid enhancing the drag.

The effect of transverse magnetic field on heat transfer is de-
picted in Fig. 5 for both PST and PHF cases. From these plots it is
observed that the transverse magnetic field contributes to the
thickening of thermal boundary layer. The resistance due to Lor-
entz force on the flow is responsible for enhancing the temperature
in all the three cases: 0 < n < 1, n = 1 and n > 1.

Fig. 6 shows the effect of Prandtl number on the heat transfer in
the PST and PHF cases. From these plots it is evident that large values
of Prandtl number result in thinning of the thermal boundary layer.
This is in contrast to the effects of other parameters on heat transfer.
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Fig. 8. Effect of temperature-dependent heat sour
Fig. 7 illustrates the effect of space-dependent heat source/sink
parameter a on the temperature profile for PST and PHF cases. It is
observed that the thermal boundary layer generates energy which
causes the temperature (in both PST and PHF) to increase in magni-
tude with increasing values of a(>0) whereas in the case a < 0 bound-
ary layer absorbs energy resulting a substantial fall in temperature
with decreasing values of |a|. It is observed in all these plots that
the direction of the heat transfer is reversed for some negative values
of a.

The effect of temperature-dependent heat source/sink parame-
ter b on heat transfer is demonstrated in Fig. 8 for PST and PHF
cases. These graphs show that energy is released for increasing val-
ues of b(>0) and this causes the magnitude of temperature to in-
crease both in PST and PHF cases, where as energy is absorbed
for decreasing values of b < 0 resulting in the significant drop of
temperature near the boundary layer.

The effect of variable thermal conductivity parameter e on tem-
perature profiles is shown in Fig. 9 for PST and PHF cases. It is ob-
served from these plots that in the PST case the increasing values of
e result in increasing the magnitude of temperature causing ther-
mal boundary layer thickening. This concurs with the results re-
ported by Chiam [19,20]. In the PHF case an opposite effect is
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observed. It is also found that the wall temperature g(0) shows
steepening for non-so-small values of e.

The effect of temperature parameter k on the heat transfer is
typical and is as in Grubka and Bobba [4]. Fig. 10 shows the ef-
fect of k for PST and PHF cases. It is observed in both PST and
PHF cases that above some critical negative value of k, the
increasing effect of k is to decrease in the magnitude of the tem-
perature. Below this negative value the effect of k is opposite.
For example, in the PST case the temperature gradient is
negative for k > �0:049571818 in respect of Newtonian fluid,
and heat flows from the stretching sheet to the ambient fluid.
When k ¼ �0:049571818; there is no heat transfer between
the stretching surface and the ambient fluid. For
k < �0:049571818, the sign of the temperature gradient changes
and heat flows from the fluid into the stretching surface. In the
PHF case it is observed that the temperature gradient is negative
for k < �1:001 in respect of Newtonian fluid, and the heat dif-
fuses from ambient fluid to the stretching surface, where as
the opposite is true for k P �1:001:The said effect is observed
for all values of n but with different critical values of k.

The values of �f 00ð0Þ, �h0ð0Þ and g(0) are tabulated in Tables
1–3. Table 1 gives the comparison of �f 00ð0Þ with Hassanien
et al. [10], Cortell [26], Liao [30] and Anderson et al. [31]. We
see that present results on �f 00ð0Þ compare quite well with those
of [10,26,30,31]. Table 2 gives the comparison of �h0ð0Þ with that
of Chiam [20]. From this table it is observed that our numerical
results coincide with the numerical results of Chiam [20] up to
three decimal places. Our three term perturbation solution
matches with the four term perturbation solution reported by
Chiam [20] for small values of e. However, for not-so-small val-
ues of e higher order corrections are warranted. The values of
�h0ð0Þ in case of PST and g(0) in case of PHF are listed in Table
3 for various values of influencing parameters. Analyzing this ta-
ble we infer that the effect increasing values of all the parame-
ters except Pr and k is to increase the values of �h0ð0Þ and g(0)
in pseudo-plastic Newtonian and dilatant fluids. The PHF bound-
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Table 1
Values of skin friction �f 00ð0Þ for various values of power-law index n with Q = 0.

n �f 00ð0Þ

Hassanien et al. [10] Cortell [26] Liao [30] Andersson et al. [31] Present study

0.2 1.9287 1.943695
0.4 1.2730 1.2715 1.272119
0.5 1.16524 1.1605 1.167740
0.6 1.0951 1.095166
0.8 1.02883 1.0280 1.0284 1.028713
1.0 1.00000 1.0000 1.0000 1.0000 1.000000
1.2 0.98737 0.9874 0.987372
1.4 0.9819 0.981884
1.5 0.98090 0.9820 0.9806 0.980653
1.6 0.9798 0.979827
1.8 0.97971 0.9794 0.979469
2.0 0.9797 0.9800 0.9800 0.979991
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Table 2
Values of h0(0) for various values e with Pr ¼ n ¼ 1;Q ¼ a ¼ b ¼ k ¼ 0.

e Chiam [20] Present study

Analytical �
P3

k¼0ekh0kð0Þ Numerical �h0ð0Þ Analytical �
P2

k¼0ekh0kð0Þ Numerical �h0ð0Þ

0.0 0.5819767 0.5819767 0.5819767 0.5819767
0.01 0.5775551 0.5775650 0.5775653 0.5768627
0.05 0.5606327 0.5606773 0.5607232 0.5600819
0.1 0.5410215 0.5411268 0.5414776 0.5406564
0.2 0.5058168 0.5064329 0.5090105 0.5061888
0.3 0.4740012 0.4765327 0.4845751 0.4764906
0.4 0.4432131 0.4504452 0.4681716 0.4505875
0.5 0.4110909 0.4274450 0.4597999 0.4277759

Here, the bold numbers indicate that higher order corrections are warranted for not-so-small values of e.

Table 3
Values of �h0ð0Þ and g(0) for various values Q ; Pr; e;a; b; k and n.

Parameters n = 0.5 n = 1.0 n = 1.5

�h0ð0Þ g (0) �h0ð0Þ g (0) �h0ð0Þ g (0)

Q Pr = 3.0, a = �0.05, b = �0.05, k = 1.0, e = 0.1
1.0 1.656164 0.514228 1.75704 0.47589 1.885245 0.450141
2.0 1.573416 0.544991 1.70304 0.49762 1.826902 0.466282
3.0 1.508367 0.571394 1.64179 0.51759 1.778368 0.480433
4.0 1.455418 0.594595 1.58573 0.53803 1.736485 0.493239
5.0 1.411287 0.615268 1.53694 0.55699 1.699523 0.505043

Pr Q = 1.0, a = �0.05, b = �0.05, k = 1.0, e = 0.1
0.5 0.526692 1.846620 0.54403 1.76846 0.566276 1.697526
1.0 0.839811 1.091951 0.88735 1.02043 0.931358 0.973748
2.0 1.300189 0.673081 1.39053 0.62192 1.471034 0.590956
3.0 1.656164 0.514228 1.75704 0.47589 1.885245 0.450141
4.0 1.955161 0.426618 1.53146 0.44590 2.232774 0.373022

a Q = 1.0, Pr = 3.0, b = �0.05, k = 1.0, e = 0.1
�0.3 1.974275 0.312598 1.96753 0.33237 2.154039 0.302574
�0.1 1.720133 0.473433 1.80249 0.44578 1.939194 0.420392

0.0 1.592020 0.555260 1.70992 0.50669 1.831202 0.480009
0.1 1.463205 0.638045 1.61066 0.57043 1.722827 0.540104
0.3 1.203448 0.806538 1.39203 0.70632 1.504924 0.661749

b Q = 1.0, Pr = 3.0, a = �0.05, k = 1.0, e = 0.1
�0.3 1.880886 0.453381 1.95629 0.42659 2.083412 0.407812
�0.1 1.704442 0.499868 1.79936 0.46447 1.927141 0.440454

0.0 1.606092 0.529832 1.71318 0.48834 1.841955 0.460623
0.1 1.504128 0.562072 1.61975 0.51718 1.750390 0.484548
0.3 1.403280 0.602345 1.39135 0.60502 1.536390 0.551978

k Q = 1.0, Pr = 3.0, a = �0.05, b = �0.05, e = 0.1
�1.0 0.427693 �0.997006 �18.6674 8662.52 0.402803 2.795688
�0.5 0.325687 3.797860 �3.56959 12.9774 0.863707 1.061513

0.0 0.866429 1.058423 0.19386 1.27708 1.251070 0.697585
0.5 1.295380 0.669511 1.29582 0.61719 1.587012 0.450141
1.0 1.656164 0.514228 1.75704 0.47589 1.656164 0.350779

e Q = 1.0, Pr = 3.0, a = �0.05, b = �0.05, k = 1.0
�0.5 2.974349 0.787063 2.74715 0.65169 3.334824 0.716607
�0.1 1.895578 0.589198 2.08708 0.53449 2.166057 0.518909

0.0 1.764810 0.549791 1.92206 0.50519 2.012728 0.482517
0.1 1.656164 0.514228 1.75704 0.47589 1.885245 0.450141
0.5 1.356256 0.402700 1.09697 0.35868 1.533163 0.350865
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ary conditions are better suited than PST in cooling the stretch-
ing sheet relatively faster as can be seen from the tabulated
values.
6. Conclusions

Some of the important findings of the paper are:

1. The effect of power-law index n and Chandrasekhar number
Q is to decrease the momentum boundary layer thickness.
2. The individual and collective effects of increasing n, Q, a, and b
are to increase the magnitude of heat transfer. The opposite
effect is observed for increasing values of Pr and k.

3. The variable thermal conductivity parameter e increases the
magnitude of temperature in PST case and decreases in PHF case.
The wall temperature in the PHF case is dependent on the value of
e and shows steepening effect for not-so-small values of e.

4. The magnitude of temperature parameter k dictates the direc-
tion of heat transfer in both PST and PHF cases.

5. Comparison of results of PST and PHF boundary conditions reveals
that PHF is better suited for effective cooling of the stretching sheet.
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Appendix A

a ¼ Pr
m2 ; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4ab

p
; c ¼ aþ b

2
;

~a0 ¼
�a0

4� 2aþ ab
; ~ai ¼

�ai þ ½ðiþ 1Þ � k�~ai�1

ðiþ 2Þ2 � ðiþ 2Þaþ ab
; for i ¼ 1;2;3; � � �

~b0 ¼
�b0

ðcþ 1Þ2 � ðcþ 1Þaþ ab
; ~bi ¼

�bi þ ½ðcþ iÞ � k�~bi�1

ðcþ iþ 1Þ2 � ðcþ iþ 1Þaþ ab

for i ¼ 1;2;3; � � �

~c0 ¼
�c0

ð2cÞ2 � ð2cÞaþ ab
; ~ci ¼

�ci þ ½ð2cþ i� 1Þ � k�~ci�1

ð2cþ iÞ2 � ð2cþ iÞaþ ab
;

for i ¼ 1;2;3; � � �
�a0 ¼ b0a� ð2þ abÞb2

0;

�a1 ¼ b1a� ð9þ 2abÞb0b1;

�a2 ¼ b2a� ð8þ abÞðb2
1 þ 2b0b2Þ;

�a3 ¼ b3a� ð25þ 2abÞðb1b2 þ b0b3Þ;
�a4 ¼ b4a� ð18þ abÞðb2

2 þ 2b1b3 þ 2b0b4Þ; � � � and so on
�b0 ¼ a0a� fðcþ 1Þ2 þ 2abga0b0;

�b1 ¼ a1a� fðcþ 2Þ2 þ 2abgða0b1 þ a1b0Þ;
�b2 ¼ a2a� fðcþ 3Þ2 þ 2abgða0b2 þ a1b1 þ a2b0Þ;
�b3 ¼ a3a� fðcþ 4Þ2 þ 2abgða0b3 þ a1b2 þ a2b1 þ a3b0Þ;
�b4 ¼ a4a� fðcþ 5Þ2 þ 2abgða0b4 þ a1b3 þ a2b2 þ a3b1 þ a4b0Þ;
� � � and so on
�c0 ¼ �ð2c2 þ abÞa2

0;

�c1 ¼ �fð1þ 2cÞ2 þ 2abga0a1;

�c2 ¼ �f2ð1þ cÞ2 þ abgða2
1 þ 2a0a2Þ;

�c3 ¼ �fð3þ 2cÞ2 þ 2abgða1a2 þ a0a3Þ;
�c4 ¼ �f2ð2þ cÞ2 þ abgða2

2 þ 2a1a3 þ 2a0a4Þ; � � � and so on

a0 ¼ 1; a1 ¼ ðc�kÞ
ðbþ1Þ1!

; a2 ¼ ðc�kÞðc�kþ1Þ
ðbþ1Þðbþ2Þ2!

; � � � and so on

b0 ¼
a

1� aþ ab

� �
; bi ¼

Yi

j¼1

j� k

ðjþ 1Þ2 � aðjþ 1Þ þ ab

 !
b0;

i ¼ 1;2;3 � � �

C1 ¼
1� a

1�aþab

� �P1
i¼0

Qi
j¼1

j�k

ðjþ1Þ2�aðjþ1Þþab

 !
ð�aÞiþ1

M½c� k; bþ 1;�a� ;

C2 ¼
�fs1 þ C1s2 þ C2

1s3g
M½c� k; bþ 1;�a� ;

C3 ¼

1
m� a

1�aþab

� �P1
i¼0

Qi
j¼1

j�k

ðjþ1Þ2�aðjþ1Þþab

 !
ðiþ 1Þð�aÞiþ1

fcM½c� k; bþ 1;�a� � aðc�kÞ
bþ1 M½c� kþ 1; bþ 2;�a�g

C4 ¼
�fg0ð0Þ

M þ t1 þ C3t2 þ C2
3t3g

cM½c� k; bþ 1;�a� � aðc�kÞ
bþ1 M½c� kþ 1; bþ 2;�a�

n o
s1 ¼ ~a0a2 � ~a1a3 þ ~a2a4 � ~a3a5 þ � � �
s1 ¼ �~b0aþ ~b1a2 � ~b2a3 þ ~b3a4 � � � �
s3 ¼ ~c0 � ~c1aþ ~c2a2 � ~c3a3 þ � � �
t1 ¼ 2~a0a2 � 3~a1a3 þ 4~a2a4 � 5a~a3a5 þ � � �
t2 ¼ �ðcþ 1Þ~b0aþ ðcþ 2Þ~b1a2 � ðcþ 3Þ~b2a3 þ ðcþ 4Þ~b3a4 � � � �
t3 ¼ ð2cÞ~c0 � ð2cþ 1Þ~c1aþ ð2cþ 2Þ~c2a2 � ð2cþ 3Þ~c3a3 þ � � �
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